The interlace polynomial of a graph
نویسندگان
چکیده
Motivated by circle graphs, and the enumeration of Euler circuits, we define a one-variable “interlace polynomial” for any graph. The polynomial satisfies a beautiful and unexpected reduction relation, quite different from the cut and fuse reduction characterizing the Tutte polynomial. It emerges that the interlace graph polynomial may be viewed as a special case of the Martin polynomial of an isotropic system, which underlies its connections with the circuit partition polynomial and the Kauffman brackets of a link diagram. The graph polynomial, in addition to being perhaps more broadly accessible than the Martin polynomial for isotropic systems, also has a two-variable generalization that is unknown for the Martin polynomial. We consider extremal properties of the interlace polynomial, its values for various special graphs, and evaluations which relate to basic graph properties such as the component and independence numbers.
منابع مشابه
The Interlace Polynomial : a New Graph Polynomialrichard Arratia
LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and sp...
متن کاملSpectral interpretations of the Interlace polynomial
We relate the interlace polynomials of a graph to the spectra of a quadratic boolean function with respect to a strategic subset of local unitary transforms. By so doing we establish links between graph theory, cryptography, coding theory, and quantum entanglement. We establish the form of the interlace polynomial for certain functions, provide a new interlace polynomial, QHN , and propose a ge...
متن کامل2 00 7 On the Complexity of the Interlace Polynomial ∗ Markus Bläser , Christian Hoffmann
We consider the two-variable interlace polynomial introduced by Arratia, Bollobás and Sorkin (2004). We develop two graph transformations which allow us to derive point-to-point reductions for the interlace polynomial. Exploiting these reductions we obtain new results concerning the computational complexity of evaluating the interlace polynomial at a fixed point. Regarding exact evaluation, we ...
متن کاملOn the Complexity of the Interlace Polynomial
We consider the two-variable interlace polynomial introduced by Arratia, Bollobás and Sorkin (2004). We develop two graph transformations which allow us to derive point-to-point reductions for the interlace polynomial. Exploiting these reductions we obtain new results concerning the computational complexity of evaluating the interlace polynomial at a fixed point. Regarding exact evaluation, we ...
متن کاملIsotropic systems and the interlace polynomial
Through a series of papers in the 1980’s, Bouchet introduced isotropic systems and the Tutte-Martin polynomial of an isotropic system. Then, Arratia, Bollobás, and Sorkin developed the interlace polynomial of a graph in [ABS00] in response to a DNA sequencing application. The interlace polynomial has generated considerable recent attention, with new results including realizing the original inte...
متن کامل2 00 7 On the Complexity of the Interlace Polynomial ∗
We consider the two-variable interlace polynomial introduced by Arratia, Bollobás and Sorkin (2004). We develop two graph transformations which allow us to derive point-to-point reductions for the interlace polynomial. Exploiting these reductions we obtain new results concerning the computational complexity of evaluating the interlace polynomial at a fixed point. Regarding exact evaluation, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 92 شماره
صفحات -
تاریخ انتشار 2004